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NATIONAL ADVISCRY COMMITTEE FOR AERONAUTICS
TECHNICAT. NOTE 3340

GENERALIZATION OF GAS-FLOW-INTERFEROMETRY THEORY AND INTERFEROGRAM
EVALUATTON EQUATIONS FOR ONE-DIMENSIONAL DENSITY FIELDS

By Walton L. Howes and Donald R. Buchele

SUMMARY

Interferogram evaluation equations for calculating one-dimensional
density distributions from optical-interference records are derived
from generalized equations. The resulting evaluation equations are ap-
plicable for any plane of focus. Assumptions involved in the derive-
tions are more general than heretofore and permit determinstion of 1imi-
tations and systemstic errors of the evaluatlion equatioms. Errors
caused by an extended or misaslined light source and by test-section
windows are found to be negligible when the extension or misslinement
is small compared with the focal length of the collimating lens. A
criterion for aepplicability of the evaluation equetlons is established,
snd a criterion for avoiding apparent-ray-trace crossing is derived.

The proposed evalustion equations and procedures are compared with
previous results and are tested in a2 hypothetical and an experimental
situation involving known density distributions.

INTRODUCTION

Zehnder-Mach interferometers have been employed in recent years for
uantitative studies of various serodynamic and thermodynamic phenomens
refs. 1 to 6), particularly boundary layers. The optical-interference

method possesses the Important advantages of permititing lnstantaneous
quantitative recording of the entire phenomenon without dlsturbing it.
However, because the 1nterference method 1is integrative, it is presently
restricted to certain guantitative applications by mathematiecal limita-
tions thet are primsrlly attributeble to the geometry of ‘the phenomenon
and to optical refraction.

Practical interferogram evaluation equations for one-dimensional
density flelds, where the density gradient is essentially perpendicular
to the incident light path, have been proposed in references 7 to 11
and include the effects of optical refraction. In references 7 to 10 a
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simple evaluation procedure 1s developed; however, this procedure in
its most general form necessitates a "shifting" procedure, becomes in-
valid in the presence of spparent-ray-trace crossing, and may not apply
in the immediste vicinity of surfaces. In the present report the analy-
sis given in reference 11 is generalized and modified in an attempt to
eliminate the preceding difficulties and to determine the importance of
various systematic errors.

GENERALIZED EQUATIONS

General functional relations giving the refractive-index distribu-
tion as & function of measursble quantities and considering a laterally
extended light source are derived. For subsequent simplicity, the fol-
lowing assumptions sre made:

(1) The interferometer optical system is perfect.

(2) The light incident at the test section, which contains the
phenomenon to be studied, 1s perfectly collimated.

(3) The refractive index of the medium to be studied is very nearly
unity.

(a) The test medium possesses no internal space discontinui-
ties of refractive index, such as shock waves, in the region of
interest.

(b) The test medium is bounded by plane discontinuities, such
a8 wind-tunnel windows, perpendicular to the optical axis of the
interfercometer optical system.

(4) A1l other media traversed by the light possess a constant
refractive index.

References 9 and 11 have shown that the pertinent effects of wind-
tunnel windows are insignificant for the case of an axial point-light-
gsource, It will presently be shown that window effects are also essen-
tilally negligible with respect to light emitted from off-axis source
points. Hence, the effects of windows bounding the test section will
be disregarded temporarily in the subsequent analysis.

The important optical quantities involved in evaluating an unknown
density field from an interferogram are: fringe shifts, which denote
observed changes of phase and order of interference associated with _.
density changes at fixed points in the field; and, a form of optlcal
distortion (very similar to a mirege) that results from spparent shifts
of locetlion of points in the field.
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In order to express fringe shifts and distortions as functions of
measurable quantities, the light path must be known. Light-ray traces
in an optical medium follow Fermat's principle, namely,

¥=c fdt =/ ds = extremum (1)

which defines an optical-path length V¥ (all symbols are defined in

appendix A), where c¢ 1is the velocity of light in vacuum, t is the
time required for the light to traverse distances measured along the
l1ight paths, and K is the refractive index of the medium. Fringe

shifts N are defined by

N = (F - T/ (2)

where X _denotes & specific wave length of light, and optical lengths
¥, and V¥, are associsted with coherent light waves end are measured

from the light source to the plane at which interference is recorded.
Two or more light waves are coherent and, hence, may be observed to in-
terfere at the interferometer image plane when any palr of ray traces
associated with the waves proceeds from the same light-source point and
intercepts the same image point.

A few representative ray traces throughout an interferometer opti-
cal system are shown in figure 1. Interference at & glven image point
may be represented generally in terms of one ray trace contained in the
test beam (trace 1), which traverses the test section, in conjurction
with a second ray trace contailned in the reference beam (trace 2), which
circumvents the test section. However, it can be easily demonstrated
(ref. 8) that those fringe shifts which are of practical interest may be
expressed in terms of ray traces in the test beam alone. Thus, the
word "reference" will henceforth refer to reference conditions pertain-
ing to the test beam. The fringe shifts of immediate practical interest
are:

(1) N,, associated with the refractive index change U, to W,

within the test section, where the subscript a refers to
atmosphere external to the test section, and the subscript <«
refers to ambient conditions within the test section

(2) W, assoclated with the refractive index change u, to p with-

in the test section, where generally u = u (x,y,z) and x,y,z
are cartesian space coordinsates

Let the x,y,z coordinate system be a right-handed system, as de-
fined in figure 1. Then, including fringe shifts contributed by off-
axils points in the light source, it is shown in appendix B that
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L

D sin ¢(-:-l) + uaKI.[sec (Pr(+1) - sec @ (+l):[} (3)

where, as shown in figure 2, L is the test-section span, @ 1s the
angle that e particular ray trace makes with the z-axis, D 1s the opti-~
cal distortion which has been defined previously in reference 11 and
will subsequently be discussed, and K 1s & fraction of the test-
section span defined by

K=1-—=— (4)

where the real object-plane 2z = zp 1s the real locus of obJjects Imaged

at the selected imsge plane. All geometrical quentitles in eguation
(3), except those quantities bearing the subscript r, are referred to
ray traces that traverse the field u. The subscript r refers to ref-
erence traces that traverse the field \He. Quantities denoted (-1) or

{(+1) are referred to the medium immediately preceding or succeeding the
test sectlon (atmosphere, as a result of the present a.ssumptions), re~
spectively. Equation (3) represents a set of equstions for each point
of the interferogram, one equation corresponding to each pertinent pair
of ray traces which interceptis & given imege point.

If Mg replaces |, a8 a reference and P reduces to the constant
value p_, then equation (3) reduces to

1
N = 1-[: p L sec @ - pL sec ¢, - PP 5in @ (-1)] . (3_8«)

which 1s most commonly applied in the paraxial form
N, == (hy - u.) L (3b)
(o] A - &

associated with an axial point-light source (ref. 12).

Distortion of the loecatlons of conjugate points can be derived by
inspection of figure 2. Thus,

D= [(1 - B)2 + 238 (1 ~ cos u)]L/2 (5)

where
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1, = i{(Z - Zr)z + 211, [1 - leos v (+l)|]}l/2 (52)
1 = KL |sec @(+1)] (5p)
1. =KL lsec ¢r(+l)l (5¢)

end v 1is the angle of refraction, H 1s the refraction displacement
perpendicular to the z-axis at plane z =L, and u is the angle formed
by the intersections of a trace through the field p, its unrefracted ex-
tension from plane =z = 0, and the assoclated reference trace through

the field u, at, and in, the plane 2z = L.

Equations (3) and (5) are useful for starting the derivation of
Interferogram-evaluation equations for particular refractive-index-
field geometries and for investigasting effects of extended or off-axis
light sources.

APPLICATTON TO ONE-DIMENSIONAL DENSITY DISTRIBUTION

Because of mathemstical complications, only the following cases
have been considered:

(1) u = constant

(2) 1 = p(y) or p(x)

(3) & = u(r) (r2 = x2 + y2) or
u = p(R) (RZ = x2 + y2 + 22)

An eveluation equation for case (1) is supplied, in general, by equation
(3a) and for the particulsr case of the axisl point-light-source by
equation (3b). Evaluation methods for case (2) have been described in
references 7 to 11. Eveluation methods for case (3) have been described
extensively in several pepers including references 1, 13, 14, and 15.
The present report is concerned with case (2) in which p is a func-
tion of a single cartesian coordinate, say ¥y, which is perpendicular

to the optical axis. (The density p is related to the refractive
index by the Dale-Gladstone formula

u=1+kp

where Xk, the specific refractivity, is a constant for any gilven wave
length.) However, it is noteworthy that equations (3) and (5) also re-
duce to the standsrd sterting equations employed for evaluating axially
symsetric distributions u(r) (refs. 1, 13, 14, and 15).
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Evaluation equations for density distributions of the form p(y)
are Jerived in series form In appendixes C and D by utllizing equations
(3) and (5). For simplicity the evaluation equations are expressed in
terms of the obJect-space coordinate y, which is related to the cor-
responding image-space coordinate y' by

y' = -my

where - m 1s the lateral magnificatlion introduced by the camera lens.
Also, the distribution p(y) is evalusted in terms of the density ratio
p¥*, where at a given ordinate value Yo

p(y,)
p

[8] =

The present evaluation equations are based, whenever possible, upon
simplifying essumptions involving the independent variables of an ex-
periment, for example, refractive index, geometry of the phenomenon, or
geometry of the experimentel epparetus, rather than, for exemple, the
light path. The principal additional assumptions are as follows:

(1) The refractive index u 1s & monotonic function of ¥y &along
any glven ray trace.

(2) The function u 1s representable along any given ray trace by
the power series By = E}bvn s Where the cartesian coord1nate n is

defined by 17 = |y - yoi. This permits simplification and extension of

the analysis to decreasing, as well as increasing, functions u(y).
Approximations are denoted one-term, two-term, ... according to the

number of terms of the series 2 ,byfN” which is utilized.

(3) Ray traces are representable by the power series 7 =§E:c0§°
in the interval o S ¢ S L, where ¢ = z.

According to the preceding assumptions, one- and two-term approximetions
are aspociated with the following additionel assumptions:

One~term approximation:
(a) Along any given ray trace, u = constent.
(b) The ray traces are straight lines through the test section.

(c) The measured fringe-shift profile 1s always distortionless.

3197
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) (d) The measured fringe-shift profile is a step function of
< ¥ or & constant for all values of y.
Two-term epproximation:
(2) Along any given ray trace p is a linear function of .

(b) The ray traces are parsbolas within the test section.

L6TE

(c) The measured fringe-shift profile is distortionless when
the selected obJject plane corresgponds to the midspasn plane of the

test section-

One- and two-term approximations and the corresponding eveluation
procedures assoclated with an axisl point-light-source are as follows:

One-term gpproximatlion: un = bg

(a) p*=1+N-—)‘—-

. koLL
Two-term approximation: u, = b, + b7
N L] 0 1
A N I S R <

{a) o ‘l*'kp,,[NL‘s(z 3K) by L

(b} y=yo=v -D

(¢) D=2 %~(l - 2K) I (see footnote)

dN |\ dp
d) by = = Incidentally, b, = k|l 3= also.
(@) vy lﬁ'l' ( ¥, by (dyyo’ )

Evaluation procedure:

(2) Plot N as a function of ) grephically from measured
data.

(b} At each datum point measure the slope of the resulting
profile Np.

(c¢) For each datum point compute by, then p¥*, D, and 1y,

. (if necessery). The density ratic p¥* as a function of
¥ represents the desired profile.

The convention + or - is associated with p(y) increasing or de-
creasing, respectively.
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Although, when K = 1/2, the preceding one- and two-term evaluation
equations are identical to the corresponding results indicated in ref-
erence 11, important differences are mede evident by the derivations,
namely: .

(1)} The present evaluation equations apply for any value of K and
permit direct calculation of p without recourse to & shifting pro-
cedure (refs. 8 to 10).

(2) The additional assumption dD/dy -0 (stated somewhat incom-
pletely as D = 0 in ref. 11) is unnecessary (but instead follows as a
direct result of the two-term assumption), so that mention in reference
11l of an lteration process for eliminating resldual distortion is in-
conslstent with respect to the primary analysis.

By relating derivetives of the measured fringe-shift profile to
derivatives of the corresponding hypothetical distortionless profile
and then to coefficlents b v’ it follows from the derivations in appen-

dixes C ard D that, s a result of the two-term approximation,
dN/dyp = dN/dy because dD/dy = O; that is, the slope of the measured

fringe-shift profile at y = yp has the same value as that of the cor-
responding hypothetlical distortionless-fringe-shift profile at ¥ = Yor
Thus, correct values of the coefficlent b; are presumebly determinable

from the measured. fringe-shift profile associated with any value of K,
and, henée, the present equations apply for any value of K.

Theoretical Limitations

The enalysis described in appendixes C and D can be used to obtain
theoretical information concerning limitations of the interferometric
method and the preceding evaluation equations and concerning the im-
portance of certain other systematlc errors. In the succeeding para-
graphs the following items asre considered: ™™

(1) Establishment of a criterion for minimizing apparent -ray-trace
crossing

(2) Series convergence and the calculetion of remsinders associated .

with the finite approximations

(3) Esteblishment of a criterion for the applicability of the pro-
posed evaluation equations .

(4) Estimation of the importance of lateral extension or misaline-
ment of the light source
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(5) Determination of desirable light-source geometries

(6) Estimation of the effect of test-section windows with respect
to off-axis light-~source points

Apparent-ray-trace crossing. - Apparent-ray-trace crossing, which
has been noted in references 9 and 10, occurs when the relative magni-~
tudes of the initial ordinates yy and corresponding apparent ordinates

¥p &ssoclated with any pair of refracted ray traces are reversed (ag in

the case of an inverted mirsge). Two cases of apparent-ray-trace cros-
sing are illustrated in figure 3. In figure 3(a) "crossing" prevails
throughout the interval for which

1l
5 =K

v
1
8

whereas in figure 3(b) crossing occurs throughout the interval for which

A
WA
8

K

oof

It is demonstrated in appendix E thet crossing occurs whenever

=

Regions of an interferogram that are associated with crossing ex-
hibit multiple imagery in that records of two or more regions of the
field o(y) are superimposed and interrelated. Such regions probebly
cannot be evaluated unless one trace of each of the crossed pairs is
prevented from reaching the final image plene. Unfortunately, the ex-
istence of crossing may not be apparent from the interferogram.

The possibility of crossing can generally be alleviated by the
proper cholce of XK. It is shown in appendix E that, for arbitrary
functions p(y), apparent-ray-trace crossing is least likely to occur
when K = 1/2 because dD/dy is essentially zero when X = 1/2. A
criterion for avolding aspparent-ray-trace crossing is also derived in
appendix E as follows: The existence of apparent-ray-trace crossing 1s
unllkely when the lnequality

—_— —_ 2
5 3
:tl(l-zx)kd—P-L?+§1;(1-4K) (k-cLQLZ) <1

¢ ay? ay?

is satisfied. The inequality may be satisfied by properly selecting

K 1f information regarding the expected extreme value of dzp/dyz is
avalleble prior to the experiment.
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Series convergence. - It has been shown in reference 9 that, if the
geries expansions for p and 1 converge, then the resulting power
series for p%* and D also converge. The introduction of a laterally
extended light source still ylelds a convergent series, but differentia-
tion of serles mey not always yleld a convergent series. In an arbitrary

experiment the existence of convergence is not assured, although it _ ——— .

would appear that the power series for p¥ and D are usually con-
vergent or, at least, asymptotic because the one-term expression for o*
has always been found to yleld results which are in reasonably good
aegreement with predicted physical values of. . o*.

The remainders assoclated with the one- and two-term spproximations
of p¥ and D are glven in asppendix E, where remainders associated
with the two-term approximation depend upon the three-term approximation
which is derived in appendix F.

Applicability criterion. - A criterion for the applicaebility of the
two-term approximation is derived in appendix E. It is shown that the
two-term approximation is likely to be valid for at lesst those regions
of the field for which the second derivative of the measured fringe-
shift profile satisfles the inequalities

-8 acy _ 14 1
— et —— & == K==
3T dy% L when 3
-1.7 aéy _ 1.6 ' 1
<< o=
XL SELE TN vhen K=3
D
-0.8 _ a2 0.5 —
< i < when K =1
"L dy% v

Celculation of p*¥ and D wup to and including the two-~term ap~-
proximation is practical. Higher-order spproximations are excessively
complicated and are limited by the imaccuracy of measuring higher-order
derivatives of N.  Also, no practical situstion has yet been en- -
countered in which the additional terms involved in the three-term ap-
proximetion are apprecilsble.

Extended or misalined light source. - Estimation of the importance
of off-sxis light-source points resulting from lateral extension or mis-
alinement of the light source can be made by inspecting the equations _
for p¥ and D which are derived in appendix C. Thus, if p and ¢
represent coordinates of light-source points in a plane perpendicular
to the optical axis such that

3197
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= - dp =

P x + constant '3 1
= - v + dg =

q ¥y + constant 'd =1

where the origin (p,q) = (0,0) lies on the optical axis, then the ef-
fects of off-axis source points are expressed by

sk =0 s (B (§) <=2
and’
w0 s (B) |¢ <

where © denotes the variation of value of the assoclated quentity from
its value when the light source consists of an axial point, and f is
the focal length of the collimsting lens. The pertinent quantities are
indicated in figure 4. Experimental evidence, which gualitatively con-
firms the preceding conclusion, ls presented in reference 8.

Light-source geometry. - It is found by inspecting the series ex-
pansions for o*¥ and D in appendix C that, from the standpoint of
evaluation-equation simplicity, light-source geometries in order of de-
creasing desirability are:

(1) Axial point

(2) Nerrow slit along p-axis

(3) Nerrow slit aslong g-axis

(4) Extension in p,q-plane

Test-section windows. - For simpliecity, the effects of test~section

windows upon N and D were disregarded in the preceding anslysis.
It is shown in sppendix E that window effects are negligible when

@) <<

and
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Anslytical Verification

The vealldity of proposed evaluatlion procedures can be investigated
and thelr limitations illusirated by calculating exactly the profile
Np associated with an assumed hypothetical profile p(y) and then by

attempting to recalculate p¥*(y) from the proposed evaluation equations
and the computed profile Np. However, the equations for computing Np

must be assumed correct and exmct, or nearly so. Otherwise the evalua-
tion equations may effect an excellent reproduction of the assumed pro-
file o*(y) although they are incorrect, as was the case in reference 16

The present evalustion equations were tested by assuming an expo-~
nential profile o(y). The profiles Np were calculated accurately and

the recomputed profiles p¥*(y) were calculated to one-, two-, and three-
term spproximatlons for three values of K, namely K = 1/3, 1/2, and
1 end for two values of L, namely L = 1.8 and 3.6 inches. The equa-
tions for calculating Ny are given In appendix G. The recomputed pro-

flles p*(y) for L = 1.8 and 3.6 inches are presented in figures 5 ard
6, respectively. The two-term profiles for K = 1/2 and L =1.8 and
3.6 inches are compared in figures 7(a) and (b), respectively, with the
corresponding profiles obtained by using the Wachtell-DeFrate method
{refs. 7 to 10).

A value of the exponential coefficient & (appendix G) was selected
that would introduce strong nonlinearities in the profile p(y) and
hence permit 1llustration of limitations of the interferometric analy-
sis and evaluation equations.

For L =.1.8 inches, the two- and three-term spproximations yielded
recomputed profiles p*(y) that are in excellent agreement with the
assumed profile p*(y) for all values of K (ag suggested in the pre-
vious discussion) and represent definite improvements over the results
of the one-term approximetion. It 1s apparent from figure 7(a) that
the two-term approximation for X = 1/2 permits evaluation closer to
the surface (y = O) than does the Wachtell-DeFrate method. In particu~
lar, p(y) is only determinsble for

0.0032 inch for X = 1/3 (method of refs. 7 to 10)

Y

1\

1/2 (method of present report)

¥y = 0.0012 inch for K

For K = 1/2 and 1 the maximum absolute magnitudes of d®N/dyd slightly

exceed the values set by the applicabllity criterion, but the agreement
of the two-term result with the assumed profile p¥(y) is still very
good..

3197
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The ratios of successive terms of the series expansions for o¥
and D are proportional to 1. Therefore, as L 1is increased, higher-
order terms increase in relative importance. For L = 3.6 inches, the
two-term spproximation represents an improvement over the one-term ap-
proximation, and the profiles for all values of K are in agreement;
however, because of the increased value of L the y interval of good
agreement with the assumed profille p*(y) is considerably reduced. In
particular, the recomputed profile p*(y) for X = 1/3 is strongly af-
fected by apparent-ray-trace crossing and the recomputed profile o*(y)
for K = 1/2 1is slightly affected, as is apparent from figure 8. How-
ever, distortion is smallest when K = 1/2 and is an ebsolute over-all
minimum for some plane in the interval 1/2 <K<1, as is ldD/dy|.

For all values of ¥, the maximum sbsolute values of dZN/dy% exceed

the values set by the applicability criterion. However, the profiles
p*(y) recomputed according to the two-term spproximation do not begin
to deviate appreciably from the assumed profile until the criterion has
been definitely violated. Thus, it may be tentatively surmised that
the =pplicability criterion is somewhat conservative. The three-term
profile p*(y) is strongly affected by the preceding difficulties and
is less useful than the profile cbtained from the two-term ecalculation.
According to figure 7(b) the Wachtell-DeFrate result is asgein limited
to a smaller y interval than the present two-term result.

Experimental Verification

In order to verify conclusively the existence and magnitude of the
optical-refraction effect, an experiment was devised for measuring the
effect and confilrming the refraction terms assoclated with the two-term
approximstion of 0¥ and D. Good agreement was obtained between
theory and experiment. Detalls and results of the experiment are dis-
cussed in appendix H.

Comparison with Other Analyses

ObJjections to analyses presented in references 16 and 17 have been
discussed in references 9 and 10. ObJectlons to the analysis in refer-
ence 11 have already been discussed in the present report.

Results given by the two-term equation derived independently by
Wachtell and DeFrate (refs. 7 to 10) are equivalent to those given by
the present one-term equation when K = 1/3. The former equation may
be readily derived from the present two-term equation. For any other
selected value of K, Wachtell in references 9 and 10 proposed a
"ghifting" procedure by which an uncorrected density profile is com-
puted and then corrected by means of shifting equations to give the
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profile associated with K = 1/3. However, "1f apparent-ray-trace cross-
ing occurs when K = 1/3, then the entire method falls because the den-
sity profile must be corrected to K = 1/3- For K = 1/5,

b4 12
D=4 N

so that a ray trace that satisfies y =0 at z = O, where ¥y = O repre-~
sents the surface of & model, will generally eppear at y =D % 0 (ref.
8). Thus, the Wachtell-DeFrate method can only be used to evaluate

o¥* in the immediate vicinity of a surface when (dp/dy)g = O.

By comparison, fallure of the present method resulting from
spparent -ray-trace crossing should not occur because the corrected den-
gity profile is assoclated with the selected value of K, rather than
with K = 1/5, gpecifically. Generally, a value of X can be chosen
for which crossing is sbsent. Moreover, the computed distortion is zero
if K= 1/2. However, slopes dN/dyD must be measured, and a refrac-

tion term must be computed in calculating p*. On the other hand,
p*(y) can be computed for any other selected value of K without re-
course to a shifting procedure if D 1is computed. The total amount of
computation is equivalent to that of the Waehtell-DeFrate wmethod with
shifting.

In reference 8 an lteration procedure 1s proposed which presumsbly
can be spplied when p(y) is extremely nonlinear and when there is no
apparent-ray-trace crossing. However, the iteration method in compari-
gson with the preceding approximation methods necesslitates an excessive
smount of computatlon and some degree of guesswork.

Lewis Flight Propulsion Laboratory
National Advisory Committee for Aeronautics
Clevelend, COhio, November 19, 1954

'
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APPENDIX A

SYMBOLS
The followlng symbols are used in this report:
a exponential refractive-index—distribution coefficient
by refractive-index coefficients

b sb " refractive-index coefficient; first and second approxima-
v,1°"y,2
tions, respectively

¢ constant

c velocity of light

Cq light-path coefficients

c§ light-path coefficients

cc,v fringe-shift coefficients

D optical dlstortion

e exponential

£ focal length of collimating lens

B .refraction displacements of ray traces in and at plane
Zz=1L

K fraction of test-section span, K= 1 - :g

Kr,o constant, Ky, = T - oK

k specific refractivity

L test-section span

1,32, lengths given by equations (5a), (5b}, and (5c), respec-
tively (fig. 2)

m lateral magnification

N interference-fringe shift
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function representing hypothetical distortion-free
Interference~fringe-shift profile

function representing measured (distorted) interference-
fringe~ghlift profile

integer

light-source coordinate parallel to x~coordinate

light-source coordinate parallel to y-coordinate

radius in spherical coordinstes

remainder

redius in cylindrical coordinates

length measured along ray trace

absolute temperature

time

window thickness

quantity defined in appendix G

angle formed by intersection of refracted-ray trace, its
unrefracted extension from plane z = O, and its associ-
ated reference trace al, and in, plane z =L (fig. 2)

refraction angle of refracted ray-trace (fig. 2)

cartesian coordinstes perpendicular to optical axis

y-coordinate value of ray trace at plane 2z = 0; y-coordinate

values associated with profile Ny

apparent y-coordinate value of source of ray trace;
y-coordinate velues associated with profile Ny

axial separatlon ¢f real- and apparent-obJject plane
optical axis

real-obJject plane

L J .

’.RTFI". I
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>

o4

('2):(‘1)
(+1),(+2)

Subscripts:

A

a

projected angle in xy- or &n-plane

projected angle in yz- or nf-plane

projected angle in xz- or &{-plane

increment

variation or change

ray-trace coordinate parallel to optical axis
ray-trace coordinate perpendicual to optical axis

coefficients

wave leﬁgth of light

refractive index

integer

ray-trace coordinete perpendiculsr to optical axis
density

density ratio, 0¥ = p(yy)/pe.

integers

angle formed by ray trace and optlcal axis
optical-path length

refers to mediums preceding test section

refers to mediums succeeding test section

refers to lower surface of upper block in hot-plate model
atmosphere
refers to change of refractive index within test section

from that of the external atmosphere to some other con-
stant value
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g window
r reference ray trace
W value at wall, or surface e

m,n,v,0,T integers
- refers to ambient conditions within test section

Superscript:

d refers to image space assoclated with camera lens

- meximum absolute value

LeTe
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AFPPENDIX B

GENERALIZED FRINGE-SHIFT EQUATION

In general, the interference fringe shift measured st a given image
point is represented by equation (2), namely

N = (¥ - ¥2)/2 (2)

The gquantities Ei and Eé are determined from assoclated ray traces

whose paths in any given optical medium are found from the first-order
partial differential equation (ref. 18)

QF B @ - o2

Equetion (B1l) is the solution of the varistion problem indicated by
equation (1), where p = p (x,y,z) may be an arbitrary function of the
cartesian coordinates x, y, 2Z.

If El and Eé are associated with ray traces which traverse the
flelds p and up_, respectively, then Af = Ei - ¥o 1s determined by

ray traces 1 and 2 1n figures 1 and 2; these traces satisfy the re-
quirements for interference because they are parellel in the space pre-~
ceding the test section. It 1is shown in references 7, 8, and 11 that
Af  ig determined entirely in the interval bounded by the plane wave-
fronts in the medium (—l), which immedistely preceeds the test section,
end by the effective plane, or spherical, wavefronts determined by
traces 1 and 2 in the medium (+1). Thus, N may be expressed by inspec-
tion in terms of the geometrical quentities shown in figure Z. The re-
sult is equation (3), in which the first term on the right-hand side is
attributed to the trace through the field u, the second term to the
trace through the field p,, the third term to obliquity of traces in
medium (-1), and the last term to obliquity of traces in medium (+1)
plus refraction.
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APPENDIX C

DERIVATION OF EVALUATION EQUATIONS ASSOCIATED WITH A
ONE-DIMENSIONAL DISTRIBUTION p(y)
Light Path

Light ray traces are determined by

2 Qv 2 2
- e
(50 +5) &) = B
For a function p = u(y), equation (Bl) possesses a solution of the form

Y(x,5,2) = ¥ (%) + ¥y(y) + ¥z(z)

namely

¥
Vv = +Ci(x - xg) i\J;b 4u2 - Cg dy tCz(z - zg)

where
2 _ n2 2.
CZ = Cl + 03

are constants. Applying Jacobi's theorem (ref. 18) reduces the solution
for ¥ +to solutions for the ray traces, namely

&z 2 uz - C% = tan B

dz C3

4y _ ¢+ L oafu® . 8 o

ax + c 93 Cs tar o

1
Initially, when - _
X = Xg Y =¥o z2=129=0
then
o =

alx,) B =B(0)

3197



L6IS

NACA TN 3340 21

and the constants C; and Cz &re given by

[u(yo)]z tan? 1(0)

" 1 + tan? (0) + tan? 1(0)

o2 . [1(vo)]?
1 + tan? B{0) + tan® y(0)

Q
o
|

where

g—;‘- = tan r
Thus, the ray traces are glven by
1 +<%§)2 + tan? v(0) =[57(%)-]2 sec? ¢(0) (c1)
where
sec? @(0) = 1 + tan? B(0) + tan® 1(0)
and

4
a‘% = constant
Equation (C1l), which applies when H(y) is an increasing functionm,
can be extended to include cases where u(y) is a decreasing function
and, also, ultimately to lead to simpler evaluatlion equations by intro-
ducing auxiliary, floating, coordinates &, n, { defined by

£ = |x - x| lg_&;i
dx

=1

1= |y - ¥l
an| =
£ =2z |dy =1

The coordinates of any given ray trace are then (E,TI;C,) = (0,0,0) at
z = 0. In terms of the new coordinates, b corresponds to u(y) and

Ho = u(yg) ag =+ alxgy) Bo = B(0)

To =% v(0) ¢q == 9(0)
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Then equation (Cl) becomes

an\? 2 b\
1 + dE) + tan® 7y =<u—o'> sec” 94
If un 1s rewritten in the form
= +
My = Mo A“n

where, for gases,

Mo = 1 and Au..q <<1
then equation (Cla) reduces to
(%%)2 =2 Aun sec? ®9 + tan? Bo
where terms in (Agn)z
of comditions (C3).

NACA TN 3340

(Cla)

(c2)

(c3)

(C1v)

are infinitesimals of higher order as a result

Generally Au is not constant. Then U, may be represented by
1 n

the power series

V=0
where
b = 1(dﬁu> .1 dvu)
vy =Eo ML w) = I
V. dn\’ o V. dYV .
“0
and
ko =Dg

(c4)

(C4a)

(c5)

3197
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Also, let the ray traces be represented by the power series

n=2 cgtt (c6)
where
_ 1 /&% _ , 1/d%
co. = H(gzg)o_ + -a-r(dfzc_-)o (07)

Utilizing the assumed series (C4) and (C6) results in the following
solution of equation (Clb):

1 = tan B, z c§§“ sec-1 (90) + zz: c§§6 sec? @q
0=1,3,5,... 0=2,4,6,...
(c8)
where the coefficlents ég are functions of the coefficients b,
namely
CI=1 C§=%b2 « o o
1 1 (ce)
* *
(12='§'bl C4=T§b1b2 e o =
and the coefficients c¢, are given by
C0=O
because n =0 at { =0, and
d: tan B, sec?"1 @ (o o0dd)
eg = (c10)
c¥ sec ¢ (¢ even)

Expressions (C9) sre obtained by substituting series (C4) and (C6) in
equation (Clb) and equating coefficients of like powers of {. Coeffi-
cients dg (0 even) are identical to the coefficients c, defined in

reference 11 for the case of an axial point-light-source.

Solutions of equation (Clb) for special light-source geometries are
reedily obtainsble from equation (C8):
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(1) The identity (p,q) = (0,0) represents an axilal-point light
source. Then By = vg = 0, and equation (C8) reduces to the ray-trace

equation, which was derived 1in reference 11l.

(2) The identity (p,q) = (p,0) represents a narrow slit-light-

source parallel to the x-axis.

fication of equation (C8) is obvious.

Then Bp = O, and the resulting simpli-

(3) The identity (p,q) = (0,q) represents a narrow slit-light-

gsource parsllel to the y-axils.

fication of equation (C8) is again obvious.

Then vqg = 0, and the resulting simpli-

It should be noted that equation (C8) increases in complexity in the
order (1), (2), (3) of the preceding light-source geometries.

Optical Distortion

Because the general fringe-shift equation (3) is a function of the
optical distortion D, the distortion will be considered first.

According to equation (C1l) individual ray traces in the field u(y)
are refracted in planes. Then, from figure 2,

u=20

and eqguation (5) reduces to

D=H-1L

However, as seen from figures 9(a) and (b) which depict ray-trace pro-
Jjections 1n the xz- and yz-planes, respectively,

vhere B = By at ¢§

H-D + KL tan Bg = KL tan BL

D

L; therefore,

= H - KL (tan By - tan Bg)

(c11)

By definition, H = Ne=1, and tan B =-dn/d§, so that 1n serles form E
is given by serles (C8) with { replaced by L, and tan By is given

by the first derivative of series (C8) with ¢ replaced by L. Per-
" forming the appropriate substitutions in equation (C11l) and reducing
the resulting expression,; the equation for D, expressed in series form,

becomes

I
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-
D = i;. Ky 4%l + KL tan By (c11a)

where, by definitiom,

Kl,U = 1 q:UK

The algebraic sign of D has been chosen to be consistent with the
coordinste y when D 1is measured with respect to the distortion-free
object point. The resulting sign convention with respect to D 1s the
reverse of that used in reference 11.

When (p,q) = (0,0), equation (Clla) reduces to the distortion
equation that was derived in reference 1l.
Fringe Shift

When p = u(y) the integral in equation (3) may be rewritten for
subsequent simplicity in terms of Hy and the coordinates &, 7, .

Then, by successive substitutions

v 2 211/2
;b @ e

L

p.n[l + tan? 1 +(%2)2]1/2 ag

0

L
sec ‘POQLO L+ Z‘J; Au.n d§>

where terms in (Aun)z are infinitesimals of higher order. Becsause
By = 1 and test-gection windows are disregarded, the following approx-
imations can be made regarding ¢, especially when ¢ 1is small:
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sec .. ® sec 94
sin ¢(-1) = sin ¢4
sec (Pr(+1) = sec @,

sec ¢ (+1) = sec 9g

3197

However,

2 2. 11/2
sec <PL (1 + ten BL + t_a.n YO)

= — gec ¢
Ho ¢ %o

(1 + Aug) sec 9

Substituting the approprilate preceding quantities in equation (3) ylelds

sec Pq L
N = —T—(uo-!-kp)L+2 0 Auqu'AuHICL-D sin ¢4 cos @q
(c12)

Equation (C12) can be derived in a more exact form by determinlng the
exact expressions for the various angles @ as functlions of ¢ and —

retaining the multiplicative constants involving u,, Hg, and ug.

However, the additional work required is excessive and yields additional -
terms which are apprecieble only when ¢ is impractically large. When
rewritten in series form, equation (C1l2) becomes

sec @ b\,cc,\, 1o+
-—r'(“o'“’“zzzml

o=1
-3 oo
o+1
KE:; z:; byeg,yL (l E:; Ky, oob" + Kb ten Bo) sin ¢ cos ¢é]
v=l 0= 0=

(C12a)

where the coefficients Cg,y &re functions of the coefficients ¢4
obtained by equating coefficients of like powers of § 1in the expression  »
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© - A Y )
Z co,,v_f," = Zl co.g‘> v = 1,2,3,...)

o=1

The density ratic p* is obtained by solving equation (Cl2a) for
B = M, utilizing the Dale-Gladstone formile, and dividing both sides

of the equation by p,. Thus,

* 1 bvegyv o E::
= + O+
pr=1+ kp.,[N L sec @, ZZ TFLI L KZ Py e, vt

v=1 o=1 v=1L g=1

(ig-l K1,qC0L° + KL tan B0>sin00 cos wo] (c13)

When (p,q) = (0,0), equations _&ClZa.) end (C13) reduce to the cor-
responding equations for N and o that were derived in reference 11.

The angle %5 1is a funetion of angles Bg and TYg. Moreover, Bg
and 1, are related to the coordinates (p,q) of the light source.
Specifically,'

tan Bg =i%

(c14)
t = + £
an Yo = +%

The conclusion stated in the section Extended or misalined light source
then results from equations (Clla), (C13), and (Cl4).

Equa.tions (Clla) and (C13) yield practical evaluation equations
for D and p¥. However s the coefficients b, , c,, and Cq,v must

first be expressed as functlons of measursble quantities. The coeffi-

clents Cq and cd,v are functions of bv' Relations permitting the

expression of coefficients b, as functions of measursble guentities
are derived in appendix D.
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RELATION BETWEEN MEASURED AND DISTORTIONLESS FRINGE-SHIFT PROFILES

ASSOCTATED WITH A ONE-DIMENSIONAL DISTRIBUTION p(y)

The coefficilents Cy,ys WP to C4,2, BTE gliven by

¢i,is ¢ €1,2
2,1 %2 2,2
¢3,1 = ©3 3,2
Cs,1 = C4 Cq,2

Coefficients Cq

=0

= o2
°1

= 2(!102

= c% + 2c1c3

are given by equations (C10), and coefficients c¥ are

given as functions of b, by expressions (C9). The coefficients b,

can be relsted to measurable sgpace derivatives of the measured fringe-
ghift profile by considering the relation between space derivatives of
the measured fringe-shift profiie and derivatives of the corresponding
profile .that would result if distortion were sbsent.

Let

(1) No(y) denote the fringe-shift profile that would be measured

if distortion were absent

(2) ND(y) denote the observed fringe-shift profile

The y component of geparation of the profiles Ny and Ny 1is the

distortion D. The y-coordinate values assoclated with a given value
Ng = Np are yp eand yp, respectively, where

Yyp = Yo .t

D -

(v2)

and D = D(yg). In equations (Clla) and (C12a) all quantities, except
N, that are variables when esssoclated with a single interferogram are

defined with respect to initial values

Yo-

Bowever, N is assoclated

with values yp. If the fringe-shift profile is distortionless, then

ND = NO and is associated with values

Yo-
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Consider figure 10, which illustrates hypothetical profiles Ny
and Ng. In a given fixed interval AN, the incremental slopes of the
profiles Ny and N are, respectively, (AN/Ay)yO and (AN/AyD)y.D

The ratio of the slopes is
9, ), -
Ay Yy AN Yo Ay

However, it results from equation (D2) that

Aﬁ =] + @.
Ay Ay
Therefore,
=L I S AN
(AyD> ¥ 1+ % (Ay)yO

In the limit, as Ay O,

dN 1 dN
_— = ——— D3)
dbD) 4 <d3>y (

v 1+ ay 0

Relations between higher derivatives of the fringe-shift profiles
may be determined by differentiating equation (D3) with respect to yp.

Thus, the nth gderivative is given by the recurrence formula

0 n-1
&g+ &Y
vy 1+ = ayp
¥y
Derivatives an/dy% are determined from the measured profile N,

vwhereas derivatives an/dyn may be expressed as functions of bv by
differentiating equation (Cl2a) with the final distortion-contributed
term omitted (because dPN/dy? d4nvolves no distortion). By direct sub-
stitutions equations (D3) and (D4) become, respectively,
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sec CPO

d c |
YD [; +2 Ky c<d “) LU]
Yo
R (bl) L2 Z Z c+l|:d(b;;o' v):ly 10+1l- ¢ : Uil:—_—L_d(b;;U V)]y 7,0+1
o y=L 0=

O v=1 o=1

et
a d.
I\ 4p ¥

(an) _

4 de

D'y 1+§ ch< ") r’
Yo

(D4e)

which incliude the effect of off-axis source -points. The coefflclents

bv s S5 , and cs y 8Te functions of y &and can be differentiated. How-
! >

ever, derivatives of coefficlents b, are functions of other coeffi-
clents b, namely

d%oy 1 @ty . (vin)!
'GF T d.y =2 bV +n (DS)

win vi
~. a8 a result of definition (CS) Computations involving a finite number
of terms in equations (D3a) and (D4a) and including derivetives of Np

up tq the mt? derivetive must only include coefficients b up to by,

in order to be consistent. Equations {D3a), (D4a), and (Ds) then yield
expressions for by as functions of measursble derivatives an/dyn

3197
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APPENDIX E

LIMITATIONS OF TWO-TERM EVALUATION EQUATIONS ASSOCIATED
WITH A ONE-DIMENSIONAL DISTRIBUTION p(y)

Apparent-ray-trace crossing. ~ The condition associsted with
apparent-ray-trace crossing can be developed by considering two ray
traces which possess inltial values yg and yg + Ayp, respectively, at

z = 0, where be + Ay0|>|y0|. Suppose distortions D(yy) and
D(yy + Ayy) are associasted with the respective traces. TIf

lyo + Ayg + Dlyg + Avg) |> [¥o + D(vp)|

then "ecrossing" does not occur because the larger initisl and apparent
absolute y-values are associated with the same ray trace. However, 1f

|yo + Ay + D(yg + Ayo)‘lg |¥o + D(yo)l

then "crossing" occurs because the trace possessing the larger absolute
initial value possesses the smaller absolute spparent-value. When the
equality i1s satisfied, the spperent-object points are superimposed. By
subtracting y, and D(yg) from both sides of the preceding equation

and dividing by Ayg, the following inequality results:

4D >
IA—Y—l (E1)
where
D = D(yy) - D(yg + 4yp)
Ay=y0+AyO-YO=AyO

A practical criterion for avoiding apparent-raxatrace crossing may
be derived from inequality (El). The limiting condition for crossing
occurs as Ay = O. Then, inequality (El) becomes

g
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The derivative of D can be calculated from equation (Cila). Thus,

= de. .
L % ea
=1 °H

which for the cese of an axial point-light=source becomes

*
> e
Kl,c dy

0=2,4,8,...

|6_12_
dyl~

Corresponding to the two-term spproximstion,

ap
=hi

beceuse equation (E2) is ultimately independent of by. However, in the
three-term approximation, equation (E2) becomes

| _ 2 1. .24
With convergence assumed, equation (E3) indicates that |dD/dyl= 0 to

a first approximation when K = 1/2. Also, equation (E3) yields a
criterion for avoiding crossing. If the coefficients b, (v > 2) are

agsumed to be insignificant, then [aD/dy|S 1 when

2,1 2r4l<
IKl’zbZL + = K1,4b2'L |= 1 (E4)

When sppsrent-ray-trace crossing exlsts, the experiment must be
repeated using another value of K Dbecause none of the evalustion
methode apply. Thus, it becomes desirable to express inequality (E4)_
in terms of quantlties that might be estimated before the experiment
is performed so that a value of K which will avoid crossing can be
selected initially. The most useful result is obtained by expressing
bz as a function of p, namely

a2

ool
ge

4

b2='.':

which results from the Dale-Gladstone formule and definition (C5). Then,
inequality (E4) immedlately becomes the crossing-criterion inequality
glven in the section Apparent-ray-trace crossing.

3197
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Series convergence. - The series remalnders associated with the
one-term approximation are given by the additlonal term conteined in
the two-term spproximetions. The remainders assoclated with the two-
term approximations of p* and D are given by the additionsl terms
which are contained 1n the three-term approximation derived in appendix
F. However, because in the third approximation the expression for by

becones modified by the multiplicative factor Xl/lz , the additionel
term involving Sby arises in the remainder equetions. The remainders
assoclated with the two-term approximation are, therefore, given by

*] < 1 2 2 .- 4)
[Ra(e®)] = Sko., KKz, 1,28% 35 £ K, ,5°1,302 l
1 —d
Ra(D)| 5% Ky ,b1 217807 + 75 ¥1,4b1, 3020 I
where
%
Sb TR eem— _1
1 xl

o
|—I
.
[AV]
1}
o
g5
[l g

\l.-'d
o
[}
g
o]
[ P

In general,

where T and o are integers, and the selected values of the conbina-
tions b?_ 3b2 and bl zPo corregpond to the largest sbsolute values
(denoted by bars) in the interval yo y < Yo + H traversed by a gilven

ray trace. The constants X5 &and X; may be calculated according to
the method described in appendix F.

The present analysis can be applied to develop reesidual-error
expressions assgoclated with the Wachtell-DeFrate method also.
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x

Applicability criterion. - The profiles -—g 'szz shown in figure

X
1
11 as a function of -szZ (cf. appendix F) are approximately straight
lines with a slope of unity in the viecinity of the origin. Thus,

X
lg- * 1, from which it follows that |bp|<<1, However, for <—g szZ\
. x

sufficiently lerge, the profiles deviate drastically from a straight —
line thus indicating that |bp| increases considerably. In fact, when

étZN/dy2 <0, Increasing values of szzl eventually correspond to de-

n
2 2
(—2-')13 2L
X7

conslderstions. The points at which the slopes of the profiles become
Zero (dzN/dyg <O) may be considered, somewhalt arbitrarily, as the

extreme limits for which "true" values of b, are obtained. The de-

fined limits correspond to fixed percentage deviations of the ratio
12/ x?_ from unity, namely

creasing values of s this condition 1s absurd from practilcal

100% when K = 1/3

1/2

1

30% when K

60% when K

Let the preceding percentage deviations determine the practical limits
of the profiles for dzN/dylz) > 0, also. Then becsause

X 2
2 2
*1 dyy,
the Indicated limits correspond to
2N
4<i9y—5-%- <7 when K=z
&¥p
2
0.8« _-hg-—NlL- <0.8 when K = 1
2 2 2
D
a2y

3197
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The inegquallties listed 1n the sectlion Applicability eriterion result
immediately from the preceding inequalities.

Test-section windows. - If the test section is bounded by wlndows,
then mediums (-1} and (+1) correspond to the initial and final window,
respectively, and the external atmosphere is contained in mediums (-2)
and (+2). It has been demonstrated in reference 11 that, associated
with an axial point-source, the additional optical-path differences con-
tributed by the presence of windows are: in the finsl window,

ugt [sec ¢ (+1) - 1] (E5)
and, in the atmosphere succeeding the test section,
by [KL - Z(t) + t] [1 - sec ¢ (+2)] (E6)

Wwhere W is the refractive index of the window and + is the window
thickness. The axiasl separation Z(t) of the spparent- and real-object

Pplanes is given by
He
z(t) = (1 - — (E7)
e

for small angles @, but is exact according to the initial assumption
(1) in the section GENERALIZED EQUATIONS.

If off-axis source polnts are considered, then contributions (E5)
and (E6) are replaced by

Hgt [sec @ (+1) - sec o (+1)1 ' (E8)
and
”a(%L + ;E %) [sec 0. (+2) - sec o (+2)] (r9)
g

respectively, where Z(t) has been replaced by the right side of expres-
sion (E7). The initial window introduces no additional contribution to
the optical-path difference because assoclated ray traces are parallel
within the window.

In reference 11 it has also been shown that terms (ES) and (ES),
with the quantity XL omitted, cencel to a high order of epproximation.
With terms involving KI. disregsrded, the only possible additional terms
of sppreciable magnitude contributed by the window are, therefore,
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kgt [1 - sec ¢y (+1)] (E10)
and

u2

—= t [sec ¢, (+2) - 1] (E11)

Hg _ )

These terms, which result from off-axlis source points, also cancel 1f
sec 9. (+1) and sec @, (+2) are of the seme order of magnitude as

gec ¢ (+1) and sec ¢ (+2). The preceding cancellations result when N
®o 1is zero, in which case the ray traces are given by

)
sec B=-u—Tl_
0

If @p 1is not zero, then the ray treces are given by

N 1/2
sec B = (u—q) Esec2 ? - tanz Yo
0

which is simply equation (Cla) rewritten. Thus, the preceding cancel-
lations result when :

sec2 ?q =1
and
'ba-nz Yo ® 0
or, in other words, when
2
tan2 Bog = (%) <<1
and
2
tan® 1q = (g—) <<1

The only remaining term of eppreciable magnitude is then

HeKL [sec @, (+2) - sec ¢ (42)]

which is actually the last term in equation (3).

I laTC
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APPENDIX F

THREE-TERM EVALUATION EQUATIONS ASSOCIATED WITH A

ONE-DIMENSIONAL DISTRIBUTION ofy)

Assuming that By = by + b0 + bznz s the evaluation equations
assoclated with the three-term approximetion are

* o1, (yr_o1 212 . L £)
(1) p% = 1+ 5 (¥ £ - 5 Kp, 512 - 75 Kp ofvL
(2) ySyg=vp - D

~ e X 2,1 2
(3) D =+ 5 K zb1€ & 55 K1,4P1b2L

(5) 122-sz2 = id_zg.}g"_

q dyg
(8) %=1+ Kl,zbzl'z +% Kl,,_,:(bzl.z)2
(7) %z = 1 + £ Ky 50512 + 7% Kp 5(b12)7

The evaluation procedure is:

(1) Plot N as a function of ¥p erasphically from measured date.
(2) At each datum point measure slope dN/dyp of the profile Ny.
(3) Plot daN/dyp as a function of .

(4) At each datum point measure slope 42N/ dy% of the profile
N/ ayp-

(5) For each datum point compute (xz/x?_)szz.
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(6) Select appropriate plot of szz as a function of (XZ/IE)bZLZ
from figure 11(a) or 11(b), depending upon the algebraic sign of
a2/ dyg, and determine the value of b,L? which corresponds to the

appropriate value of K =&nd to the computed value of (xz/xg)szE.
(Plots of'(xz/xi)szz as a function of szz are given in figures
11(a) end (b) for . K = 1/3, 1/2, and 1 and for a®N/ayZ >0 and
a?n/ayg <o.)

(7) For each datum point compute by = (szz)/tz.
(8) For each detum point compute X; and X 5.
(9) For each datum point compute by, then p¥, D, and y,. ,

The density ratio 0¥ as a function of y vrepresents the desired
profile.
The measured quantity N and the computed quantities dN/dyD,

dzN/dy% are assoclated with the measured profile Ny and values ¥p.

All other quantities which are functions of ¥y are assoclated with
distortionless values y5 = ¥.

The profiles (xz/uﬁ)szz a3 g function of szz were obtained by
choosing values of szz, computing Xy, Xp, and then (uzfxg)szz for

a glven value of K. Thus, profiles can be readlly determined for other
values of K. o ' o B
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APPENDIX G

EQUATTONS FCR CALCULATING PROFILE Np ASSOCIATED WITH A
HYPOTEETICAI EXPONENTTAL-DENSTITY PROFILE

In order to calculate the profile Np associated with an assumed

hypothetical profile p(y), the assumed profile p(y) must be selected
such that

Yo +H

&y [w(y) 2 ulye)] (e1)

el
[ gt

whlech are involved in computing Np, are readily integrable in exact,

or nearly exact, form. Among possible assumed distributions o(y) an
exponential function, which corresponds to the refrsctive-index dis-
tribution

and

b= e - (e - wp)e¥/®

where P =4, at y =0, and a is an arbitrary constant, permits the

required integrations and corresponds vaguely to a possible boundary-
layer profile.

With an exponential density distribution and an axial point source
assumed, the ray-trace displacements H at § = L are given by the
solution of equation (Gl), namely

H==2a 1n|Z (1 + cosh t) (a2)
2 ]

where

L ~¥o/ 2a
t=EA[2hJ.’ -p.wie 0/
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The ray traces satisfy

y=y0 8t (=
Y=y, at (=
where
Vi, =Y +E
At ¥ = Yoo
B(¥o) = te = (ie - uw)e'yo/& (G3a)
A ¥y = ¥
w(yp) = ke - (1, - uw)e'yl'/a (G3b)

The fringe shiftse and distortions are given by equations (Cl2) and
(C11), respectively, which become in the present instance

2
N =[u - (1 - K) ulyp) - K u(yp)F - 2 5t teon (5)  (co)

= B - p2[n(yp) - w(3p)] KL (65)

In order to recompute p*(y), values of the derivatives an/dy%
must be determined. Theoretical values of an/dyn can be computed.

Derivatives d"N/dy® are obtained by differentiating equation (G4),
with u(yo) and u(yL) replaced by the right side of equations (G3a)

and (G3b)}, respectively. The required first two derivatives asre given by

2 42 N

(%)yo = -[(1 - K)(%&y)yo + K(%%)yL(l | gl;)]i fa” zyg (c6a)
—z ~< (1-K) P o il L &3m
Qdyz) Yo a ) [ ) v aF y2>yL L+ F) | (R P

(a6b)
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where

and

Derivatives

wWhere

(EE) _ M- w(yg)
dy Yo 8.
<—‘dz“> - - &)
dyz Yo a\dy. Yo
_dﬁ 3 Hee = IJ-(YL)
dy‘)yL - a

afu) _ _ Lfaw
<E;% I, o a(dy)YL

d"#/dy" follow from equation (G2).

sinh t 4t

& _ o, 4y

dy 1 +cosht
2

(dt 2 a“t
—)} <+ s8inh t —3
atg _ My dy?
dyz 1 +cosh t
a°m 1 |t2 ag 2t
F"'z_a.'[éz_a(l"'d_y'sec’h z +
a =t
dy = 2a
a2t t

41

{a78)

(67p)

(G8a)

(G8b)

(G9a)

(G9b)

(G9e)

(¢10a)

(G10b)
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Derivatives d"N/dyf are functions of derivatives a™N/day® given by

equation (D3) and the recurrence formula (D4). The required first two
derivatives of D are obtained by differentiating equation (G5) follow-
ing the previously mentioned substitutions for u(yg) and p(yp). Then,

dp gHE a2y

H %t zaKEy'Z' (Gllsa)
EER = _EE + ZEK.EEE {(¢11b)
dy?  ay? ay°>

The profile Np is determined by computing equations (G1) to (G5),
and the derivatives de/dyg (n = 1,2) are calculated from equations

(G6) to (G11).

The selected values of the constants were

6.77x10~% glug/£t3)

i, = 1.0000792 (p, =

b, = 1.0000475 (o = 4,06X10™% slug/et3)
a = 0.0058 in.

A = 2.15X10"° in. (mercury green line)
% = 0,117 £t5/slug

which, except for a, are ldenticel to the values involved in the
example of reference 11.

[
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APPENDIX H

EXPERIMENTAL VERIFICATION OF REFRACTION EFFECT .

The conduction of heat by alr between two horizontal surfaces pro-
vides a readily produced and reasonably predictable density distribution
vwhich may be utilized for verifying the refraction effect and two-term
eveluation equations. Consider two identical rectangular-~shaped blocks
placed one above the other and separated by a small distance, with fac-
ing surfaces A &and B corresponding to the bottom surfece of the top
block and the top surface of the bottom bloek, respectively. Suppose
that both blocks contain a reference hole which extends throughout the
horizontal length of the block and is orilented parsllel to the optical
axis of the interferometer.

When the upper block is heated, & constant temperature gradient is
produced in the airspace between the blocks, whereas the temperatures
within the reference holes are constants. TIf the blocks are good heat
conductors, then the temperature T, within the reference hole through

the upper block and the temperature Ty &t surface A are equal. How-
ever, (dp/dy); = O wheress (do/dy) 5 = comstant # 0, so that light which

traverses the space between the blocks iz refracted whereas light which
traverses the reference hole is not. Thus, the optical-path difference
between light pessing adjacent to A and light traversing the reference
hole should theoretically be given by

2
=3 aN \* ,2
Ny =% KZ,S(dyD)A 2L . (H1)

and the distortion should be given by
1 dN
Dp =3 K12 E}—ﬁ;) AL (E2)
A

These equations contaln only contributions attributeble to refraction.

In order to properly assoclate the refraction and reference fringes,
the algebrailc sign of the fringe shift corresponding to the reference
region in the lower block must be determined. Because Ty < Ty, where

Ty, 1s the temperature of the lower block, Mg > U3, so that N, > O.
Therefore, it follows from equation (H1l) that: '
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(1) If X <2/3, then N, > O and the fringes between the blocks
A

are displaced toward the gzero-order fringe in the lower reference reglon
(fig. 12(a)).

(2) If K = 2/3, then N, = O, that is, no fringe shift occurs
(rig. 12(v)).

(3) If K >2/3, then Np €0 and the fringes are displaced away
from the zero-order fringe in the lower reference reglon (fig. 12(c}).
A corresponding interferogram utilizing unfiltered light will permlt
the zero-order fringe to be distingulshed.

The model shown in figure 13 was constructed in order to simulate
the aforementloned conditlons. The model conslsts .of two Duraluminum
blocks 10-inches long which are separated by two 0.l4-inch thick, 10-
inch long Insulating strips of glass. The top surface of the upper
block 18 radisnt-heated by & Nichrome-wire heater consisting of Nichrome
resistance wire wound with varying pitch around a thin sheet of mieca.
The heating element and most of the upper block are insulated from the
external atmosphere by a Transite 11d in order that the heat-flow rate
from the upper block to the lower block will be & maximum for any given
heating current. A reference hole was machined the length of each
block, and a reference pin was projected into each reference hole for
focussing purposes and as a measuring reference,

FPigures 14(a) and (b) depict typical interferograms of the heated
air for K = 1/2 and 1, respectively; these Interferograms were ob-
tained by utilizing unfiltered light from s magresium spark in conjunc-
tlon with a bhorizontal slit. It is epparent that the temperature gra-
dient between the blocks is nearly constant. Curvaeture of the fringes
near the upper surface of the lower block is caused by reflection.

In figures 15(a) and (b), experimentally determined values of
optical-path differences and distortion, respectively, are compared
with theoretical velues indicsted by equations (H1) and (H2). The
guantities HAX and D, are plotted with respect to the generalized

coordinate (dN/dyp)pA which ylelds a single curve for all wave lengths
A. Actuslly, the experimental data include measurements at two wave

lengths, namely 4481 2 (magnesium spark) and 5461 2 (mercury arc).
Agreement of the experimentally determined polnts with the predicted
curves 1s regarded as good considering the errors involved 1n the ex-
periment and the fact that the difference in values amounts to the
error of measuring a smgll error.

The most important experimental errors probebly were end effects,
thermal expansion of the apparatus, nonuniform heating of the spparatus,
inclination of reference fringes, and poor definition of the apparent
location of surface A.
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In attempting to minimize end effects, the model was initially
bounded by 0.8-inch-thick glass windows separated from the model ends
by thin cork spacers. The windows were slid into position immediately
preceding each photographic exposure. The experimental date were then
in poor agreement with theory. Apparently, insertion of the windows
prior to the photographic exposure, even for very short periods of time,
allowed apprecisble nonuniform heating of the glass. Air disturbances
were not evident. It would sppear that extreme caution should be ex-
ercised 1n interpreting interferograms of heated models when the model
contacts bounding glass windows. In order to eliminate the window
effects, the windows were removed, and the ends were left unbounded.

A new set of measurements rendered the results presented In figures
15{(a) and (b). The interference pattern obtained across the end of the
model with the open-end arrangement was examined visually while the
model was heated. The endwise boundary layer was found to be of nearly
constant thlickness (about 1/4 inch) in the region of interest, and the
temperature gradient was essentially parsllel to the model length at
all pertinent temperatures. Thus, the end effects were regarded as in-
appreciable when the windows were removed.

Thermal expansion of the model was considered in the vertical di-
rection, but expansion in the lengthwise direction was neglected.

Temperatures were measured throughout the model by means of thermo-
couples located at the pointe indicated in figure 13(b). A typical
temperature distribution is also indicated in the figure, where the
temperature difference at each point is noted with respect to the upper-
most thermocouple location in the midspen plane. Inclination of refer-
ence fringes with respect to swrface A, caused by initisl misorientation
of the fringes and the small vertical temperature gradient within the
upper block, was considered in the measurements.

The existence of refracted ray traces in the vicinity of surface
A tended to diminish the definition of the apparent surface location.
The difficulty of loeating surface A, especilally when X = 1/2, may
account for the apperent systematic disegreement between theory and
experiment when K = 1/2.

REFERENCES

l. Winckler, John R.: The Mach Interferometer Applied to Studying en
Axially~Symmetric Supersonic Alr Jet. Rev. Sci. Inst., vol. 19,
no. 5, May 1948, pp. 307-322.

2. Eckert, E., R. G., and Soehngen, E. E.: Studles on Heat Transfer in
Laminar Free Convection with the Zehnder-Msch Interferometer.
Tech, Rep. 5747, A.T.I. No. 44580, Air Materiel Command, Wright-
Patterson Air Force Bage, Dayton ZOhio), Dec. 27, 1948.



46

NACA TN 3340

Ladenburg, R., and Bershader, D.: On Laminar and Turbulent Boundary
Layer in Supersonic Flow. Rev. Mod. Phys., vol. 21, no. 3, July
1949, pp. 510-515. - -

Gooderum, Paul B., Wood, George P., and Brevoort, Maurice J.: In-
vestigation with an Interferometer of the Turbulent Mixing of a —
Free Supersonic Jet. NACA Rep. 963, 1950. (Supersedes NACA TN
1857.) ‘

. Kovasznay, Leslie S. G., and Clarken, Patrlcia C.: Experimental In-

vestigation of Optical Methods for Measuring Twbulence. Tech.
Rep. No. 42, Proj. Squid, Johns Hopkins Univ., Jan. 1, 1952.
(Office Naval Res., Dept. Navy, Res. &nd Dev. Command, Dept. Air
Force Contract N6ori-1l05, Task Order III, NR-098-038.)

Lin. C. S., Mouton, R. W., and Putnam, G, L.: Mass Transfer Between
Solid Wall and Fluild Stresms. Ind. end Eng. Chem., vol. 45, no.

3, Mar. 1953, pp. 636-640. . .

Wachtell, G. P.: Refraction Effect 1in Interferometry of Boundary
Layer of Supersonic Flow Along Flat Plate. Appendix to: Prog.
Rep. No. 19, The Study of Supersonic Flow by Interferometry and
Other Optical Methods by R. Ladenburg. Palmer Phys. Lab.,
Princeton Univ., Dec. 19, 1949. (Contract N7 ONR 399, Task Order 1.)

DeFrate, Louls A.: Application of the Interferometer to the Study
of Boundary Layers. Sc. D. Thesis, M.I.T. 1950,

Wachtell, George Peter: Refraction Error in Interferometry of
Boundary Layer 1n Supersonic Flow Along a Flat Plate. Ph. D.
Thesis, Princeton Univ., 1951.

10. Wachtell, G. P.: The Refraction Problem. Pt. VIII in Optical

Studies of Boundary Layer Phenomena on a Flat Plate at Mach Number
2.35 by R. Ladenburg and D. Bershader. ZFingl Tech. Rep. NRO61-020,
Palmer Phys. Lab., Princeton Univ., Dec. 15, 1952, pp. 81-124.
(Contract N6ori-105, Tesk II.)

1l. Howes, Walton L., and Buchele, Donald R.: A Theory and Method for

1z,

Applylng Interferometry to the Measurement of Certain Two- : -
Dimensional Gaseous Density Fields. WNACA TN 2693, 1952.

Jenkins, Francis A., and White, Harvey E.: Fundamentals of Physical
Cpties. First ed., MeGraw-Hill Book Co., Inc., 1837, p. 79.

13, Schardin, H.: Theory and Applications of the Mach-Zehnder

Interference-Refractometer. Rep. T-3, Defense Res. Leb., Unilv.
of Texas, 1946.

3197



LBIS

NACA TN 3340 47

14.

15.

16.

17.

is.

Ladenburg, R., Van Voorhig, C. C., and Winckler, J.: Interfero-
metric Study of Supersonic Phenomena. Pt. I: A Supersonic Alr
Jet at 60 lb/in2 Tank Pressure. NAVORD Rep. 69-46, Bur. Ord.,
Navy Dept., Apr. 17, 1946. (See also Phys. Rev., vol. 76, no.
5, Sept. 1949, pp. 662-677.)

Bennett, F. D., Carter, W. C., and Bergdolt, V. E.: TInterferometric
Analysis of Airflow ebout Projectiles in Free Flight. Jour.
Appl. Phys., vol. 23, no. 4, Apr. 1952, pp. 453-469.

Blue, Robert E.: Interferometer Corrections and Measurements of
Laminar Boundary Layers in Supersonic Stresm. NACA TN 2110, 1950.

Bershader, Daniel: An Interferometric Study of Supersonic Channel
Flow. Rev. Sci. Inst., vol. 20, no. 4, Apr. 1949, pp. 260-275,

Luneberg, R. K.: Mathematicel Theory of Optics. Advanced Instruc-
tion and Research in Mechanics, Brown Univ., Providence (R. I.),
1944,



48 NACA TN 3340

/—Light source

T

t
1

il

JaTe |

/— Collimating lens -

Splitter plate N Mirror - :
Apparent-object plane \l
IN

x Trace 1 N\— Trece 2
/ vl / N -
A ™ Splitter plate _
../ |
“{
I -!
o e !
—h ] e/.,l____ [
/ 2 —
/

Cemera lens

Test section o

r
/

\
Image plane P

Y
/ z! CD-4074

xl

Figure 1. - Zehnder-Mech interferometer and characteristic ray traces. -



n

)

/ H
0%ce NI VOVN

2z l\\\ -
l\\\ \\\ E Madiim (+1)
AN % 1’4
\\\ \\ //"
zZ=( 4 ! \ -
NG oo | 1 ,/

!
/ q5\+1

b \L- P /<\ Apparant-o'b,ject polint

Medium {-1)

Trace
ek
/ - /\
2 Initiel boundary CD-408
7’

Flgure 2. - Llght-path detail within test section.

8¥%



NACA TN 3340

50
¥y
A l
, /
YO+Ay0 — e
yo = . —
’_—// //
—_—
—
—
o
i —
Test) section
z = Q z =1
zp = L/2
(a)
¥
/ |
/
‘_///___——""’-
Yo +A&¥p ——
YO _‘_‘_____,.—-'/"‘/
_////
| ..
Test|section
z e 0 zRuL/Z 2 =L
(o)

Flgure 3. - Exemples of epparent-ray-trace crossing.

3197



CM-7 back . 3197

—i~ g

Collimating lems

Figure 4. - Light-path detail preceding collimating lens.

NL ¥OWN

™
>

Ove¢

TS




Dengity ratio, p¥

1.00 —— . —
_‘-"*)—--—
o
.92 yf//
)//
o
- o/
/ Recamputed
a Dointe;
[ X
o
/ . s
.76 4 o 1f2
/ 2o
/ —_— Aggumed profile
A 0/
.68 : /I
/I
IE'O
a2
.52
-.005 o] .0056 010 015 020 .025 0%0 -035 040
¥, in.
{a) One-term approximation.
" Flgure 5. - Re-evalustion of exponential density i;)rufile where L = 1.8 imches.
1 o ! K 1
« o , . -
I 71y T H I"!'!!H- S . - ! L I . Vooda !

as

Opee NI VOVN




Demelty ratlo, p¥*

»
OFEE ML VOVH

1.00 /"_’___.__—-I’—f —& : %
. / /
¥
/ Recomputed
points,
.84 ./ X
/ v 1/3
/ o 1/2
A 1
Apgumed profile
.78
/
.88 /‘/
o . +005 010 015 .020 025 030 035 .040

¥, in.
(b) Two-term spproximation.

Flgure 5. - Continued. Re-evaluation of exponentisl density profile where L = 1.8 inches.

045

23




Deneity ratio, p*

1.00

.92

B4

+76

a4

Ramsmmrtod

A TURI TR

pointga,
K

e
1

Assumed profile

.68

-60

.58

/
/
F
¢ 005 010 -015 020 025 030 085 040 045
¥, in.
(c) Three-term spproximation.
Figure 5. - Concluded. Re-evalustion of exponentizl deneity profile vhare L = 1.8 inches.

I i n
1 L | 1 ’ \ L o
I‘\ IJI'-I.I.I nh 11 [ER i i 1 T ] HFi. @ 0 [ 'J'LSIS:!--“_ rlllhh

0¥%ee NI VOVN




Dengity ratio, p*

3197

1.00 /‘—_________‘__ * L 2 »
4
/V’-
7T
'y
.92 2
. A c/
A a A
2 8 /
Recomputed
A / points,
a4 / X
y
/ v /3
o 1/2
A L
Aammed profile
.78 - /
‘68 //
/
.80 l/
» =010 « =005 0 .005 -010 015 .020 085 .0%0 035 040
¥y in.

(a) One-term spproximation.

Figure 8. - Re-avaluation of exponsmtisl density profile where L = 3.6 inches.

0%ee N& VOWN

sS




Density ratio, p*

l.-l

s Ar B %‘-. ! _4!
/D_,,a-'
oy
92 /
/.
Le
/\
',
-84 / B Recomputed
/ 2 points,
/ K
/ . 145
o /a2
/
/ Asmumed profile
68 //
.BOM/
0 005 .010 .015 020 025 030 035 040

Filgure 6. - Contlinued.

¥, ihb.

(b) Two-term approximetion.

Re-evaluation of exponentlal density profile where L = 3.6 inches.

85

09ee NL VOVN



CM-38 TolY T

0Pce NI YOVH

Denalty ratio, p¥*

.76

.60

J
P
/c” A
P
a
/,/'
#f Recomputed
. points,
rd K
/
/ v 1[3
/ o 1/2
A
Agpured profile
f
I
005 010 .015 020 .025 030 035 .040 {045

{c) Three-term approximation.

f exponentiml depeity profile vhere L = 3.6 Inches.

L9



Deneity ratlo, p¥*

1.00 ’/ér_______——-i—— b d . * -4
_/
/‘w—
/ i
02 //
i
.84 nd K
r .
/ v 1/3 (refs. 7 to 10)
/ o 1/2 (two-term spproxisation,
present report)
76 Assuned profile
. /v
F

.60

-005 -010 -015 020 .025 .030 035 040 045

¥, in.

(a) L = 1.8 inches.

Figure 7. - Comparison of re-evalusted denglity profilea.

CVael = ELs =

T~

I e |

| e 1!

1 I O B r - . ' 1.
vt A ! - . - Lo
N I "|'II..|-'J.'.‘ R R Y RO B B NV RIRNTCTY b IF--5 ¢ o LI A [T

88

O%EE ML VOVN



Density ratio, p¥

Cmer

M-8 back
1.00 o 4
4T ]
4?“’Jr’—_
' T
. /6 /m
(]
Ny A
54 7 K
)
/ v 1/5 (refs. 7 to 10)
F o 1/2 (two~term epproximation,
present report)
76 Assumed, profile
/
/I
68—/
.60/
0 005 «010 015 020 +025 030 035 040
¥y imo.

(b} L = 3.6 incheg.

Figure 7. - Concluded. Comparison of re-evaluasted density profiles.

OFES NI VOVN

6s




Distortion gredient, %

1.2

1.0

.8

.6

.4

2

L
.
~

[ '
®o__ ®

I
l_J
o

-1.2

Dlastortion, D, in.

L1z

-.004

-.008

-.012

-.016

T
N _ ol PO
\B %Y1
1/3
\ >
\ a
N ay
1/z T:><::_ "_""‘--.__h
— ] ~
1 K\ . T~ -
! ‘\\\‘\‘E\h “5~§=§§‘n T
‘-_\-
— -._"—-._‘____‘ [ —
e
] -—f::::""“_v
d ”::::zf
/]
/
A~
|21 /
r
1/
/| /)
/ / I«%I >1
1
3
///
o} 005 010 .015 .020 -025 030 035 040 045
¥, in.

Figure B. -lnistortion and distortion gradiant aspoclated with object planes correspanding to K = 1/3, 1/z,

Py

e ChAEL CIDDI.MIBU- HeUD.L by HJ-\.ILJ-J.C’ I'LIEJ-U J.l

. 2 0 Remlan
= ey Luluc o

ey
-
n-

B

09

O%2e NI VOWM



3197

NACA TN 3340 61

Traces 1 and 2

(a) Projection in xz-plane.

(b) Projection in yz-plane.

Figure 9. - Ray-trace projections in presence of a unidirectionsal
distribution p = p(y).
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Figure 10. - Relstlon of obseerved profille
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Upper

reference hole —{

Glaes seperator

s Thermocouple locations

Lower reference haole

CD-4079
Glass seperator

(b) Schematic dlagram. (Temperature drop indicated with respect to

temperature {272°F) at uppermost midespen thermocouple loeaticn.)

Fipgure 135. -~ Concluded. Hot-plate model.
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Flgure l&. - Interferogram of heated model.
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(h) K=1.

- Concluded. Interferogram of heated model.

Flgure 14.
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Flgure 15. - Verification of refraction-error form:la associated with
constant density gradient.
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Figure 15. ~ Concluded. Verification of refraction-error formila associated
with constant density gradient.
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